

Bis[(di-tert-butylphosphanyl)methyl]methylphosphan^[1]

Jochen Krill, Igor V. Shevchenko, Axel Fischer, Peter G. Jones und Reinhard Schmutzler*

Institut für Anorganische Chemie und Analytische Chemie der Technischen Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany

Eingegangen am 19. Mai 1993

Key Words: Steric overcrowding / Trisphosphane, linear, bismethylene-bridged / Molybdenum, complexes with bis- and trisphosphanes

Bis[(di-tert-butylphosphanyl)methyl]methylphosphane^[1]

The synthesis of [(di-tert-butylphosphanyl)methyl]dimethylphosphane (3) and of the title compound 5 is described. 5 reacts with sulfur to form the trisulfide 6. Both 3 and 5 behave as bidentate ligands in forming the molybdenum complexes 8

Die Umsetzung des einfach lithiierten Trimethylphosphans 1 mit Di-*tert*-butylchlorphosphan (2) führt nicht nur zur Bildung des bereits beschriebenen ditertiären methylenverbrückten Bisphosphans $3^{[2]}$, sondern auch zum unverzweigten tritertiären Trisphosphan 5. Aus 3 entsteht 4a durch Lithiierung mit 1 an der C-H-aciden Methylenbrücke von 3. Das Bisphosphan 4a reagiert jedoch aus sterischen Gründen nicht mit 2 zu 5a, obwohl diese Reaktion mit weniger anspruchsvoll substituierten Methylenbisphosphanen in guten Ausbeuten abläuft^[3]. Ebensowenig entsteht das zu $tBu_2P-P(Me)_2=CHP(C_6H_5)_2$ ^[3] analoge Ylid 5b aus 4b. Vielmehr wird das thermodynamisch weniger begünstigte Carbanion 4, das durch eine prototrope Umlagerung aus 4a und 4b entsteht, dem Gleichgewicht durch Reaktion mit 2 unter Bildung der linearen Verbindung 5 entzogen.

Das ¹³C-DEPT-NMR-Spektrum beweist das Vorliegen der PCH₂P-Einheiten in 5. Trotz der sterisch anspruchs-

and 10, which are characterized by single crystal X-ray structure determinations. 10 reacts with sulfur to yield the sulfide 11, which decomposes in solution within 6 h.

vollen *tert*-Butyl-Gruppen reagiert 5 mit Schwefel bei Raumtemperatur, selbst im Unterschuß, ohne Bildung anderer Produkte zu 6, wie es für alkylsubstituierte Phosphane allgemein bekannt ist^[4].

$$5 \xrightarrow{S_{\theta}} {}^{t}Bu_{2}P \xrightarrow{P} {}^{P} \xrightarrow{P} P^{t}Bu_{2} \quad (1)$$

Das ${}^{13}C{}^{1}H}-NMR-Spektrum von 6 zeigt für die quar$ tären C-Atome der*tert*-Butyl-Gruppen zwei Dubletts undläßt so die Inäquivalenz der beiden*tert*-Butyl-Gruppen aneinem P-Atom erkennen.

Frühere Umsetzungen von sterisch weniger überfrachtetem $Me_2PCH_2P(Me)CH_2PMe_2$ mit $Fe_2(CO)_9$ führten zu dreikernigen Komplexen oder zu zweikernigen sechsgliedrigen Chelatringsystemen oder zu Clustern mit Fe–Fe-Bindungen^[5]. Verbindung **5** reagiert jedoch unter vergleichbaren Bedingungen nicht mit Fe₂(CO)₉.

3 reagiert mit Tetracarbonyl(norbornadien)molybdän(0) (7) zu 8. Die Einkristall-Röntgenstrukturanalyse (s.u.) zeigt die erwartete *cis*-ständige Koordination des Liganden, die sich auch in den NMR-spektroskopischen Daten widerspiegelt.

Setzt man 5 mit Tetracarbonyl(norbornadien)molybdän(0) (7) oder Tricarbonyl(cycloheptatrien)molybdän(0) (9) um, so erhält man in beiden Fällen in guter Ausbeute 10. Bei der Umsetzung von 9 mit 5 ist die Besetzung der freien Koordinationsstelle mit CO, das durch Zersetzung von 9 entsteht, gegenüber der Koordination des dritten Phosphoratoms bevorzugt. 5 wirkt hier nur als bipodaler Ligand.

Die Strukturen der Verbindungen 8 und 10 (Abb. 1, 2) zeigen verzerrt oktaedrisch koordinierte Molybdänatome, die an die methylenverbrückten bidentalen Oligophosphane gebunden sind. Die "Bißwinkel" P1-Mo1-P2 weisen mit $67.56(2)^{\circ}$ (8) bzw. $67.31(3)^{\circ}$ (10) keinen signifikanten Unterschied auf und zeigen gleichzeitig die größte Abweichung von der idealen oktaedrischen Koordinationsgeometrie. Ein geringer, allerdings auffallender Unterschied zwischen den Verbindungen 8 und 10 besteht in der Geometrie der Vierringe: Während bei 10 die mittlere Abweichung von der Ebene nur 5.4 pm beträgt, sind es bei 8 immerhin 10.2 pm - vermutlich eine Folge der im Vergleich zu 10 höheren sterischen Überfachtung am P2-Phosphoratom. Die Ebenenknickwinkel besitzen Werte von 8.5° (10) bzw. 16.1° (8). Die nichtbindenden Phosphor-Phosphor-Abstände sind mit 284.3 (8) bzw. 284.5 pm (10) kurz. Der nichtbindende Abstand P2-P3 in Verbindung 10 beträgt dagegen 306.8 pm und verdeutlicht damit die abstandsverringernde Wirkung der Chelatringspannung in bezug auf die Phosphoratome. Die Molybdän-Kohlenstoff-Bindungsabstände trans zu den Phosphor-Ligandenbindungen sind stets kürzer als die entsprechenden cis-Bindungsabstände. Die asymmetrische Einheit von 8 enthält ein halbes, über ein Inversionszentrum ungeordnetes Molekül Toluol.

Abb. 2. Das Molekül von Verbindung 10 im Kristall. Radien sind willkürlich. Ausgewählte Abstände [pm] und Winkel [°]: Mo(1)-C(20) 198.8, Mo(1)-C(21) 202.9, Mo(1)-C(22) 197.2, Mo(1)-C(23) 203.6, Mo(1)-P(1) 258.56, Mo(1)-P(2) 254.76, P(1)-C(1) 184.7, P(2)-C(1) 185.1, P(2)-C(2) 183.9 pm; C(22)-Mo(1)-C(20) 93.96, C(22)-Mo(1)-C(21) 83.41, C(20)-Mo(1)-C(21) 87.25, C(22)-Mo(1)-C(23) 83.17, C(20)-Mo(1)-C(23) 88.84, P(2)-Mo(1)-P(1) 67.31, C(1)-P(1)-Mo(1) 95.13, C(1)-P(2)-Mo(1) 96.28, P(1)-C(1)-P(2) 100.60, P(2)-C(2)-P(3) 111.69°

Für 10 wäre in Lösung bei Raumtemperatur dynamisches Verhalten zu erwarten. Im ³¹P{¹H}-NMR-Spektrum zeigt sich aber ein AMX-Spinsystem mit den chemischen Verschiebungen $\delta = 42.39$, 18.82 und -18.99. Zudem läßt sich keine Verbreiterung der Linien im NMR-Spektrum beobachten. Weiterhin reagiert 10 mit Schwefel bei Raumtemperatur in CDCl₃ zu 11, das in Lösung NMR-spektroskopisch u.a. durch eine Tieffeldverschiebung der ³¹P-Resonanz der nichtkomplexierten $\lambda^4 P=S$ -Gruppe um 58 ppm gegenüber derjenigen von $\lambda^3 P$ in 10 nachgewiesen werden kann. Der Komplex zersetzt sich in Lösung innerhalb von 6 h bzw. bei Entfernung des Lösungsmittels zu einer Vielzahl nicht identifizierter Verbindungen. Diese Instabilität beim We chsel der Oxidationsstufe von P(III) nach $\lambda^4 P(V)$ erklärt sich nicht durch den Entzug eines freien Elektronenpaares und einer damit verbundenen Unterdrückung dynamischen Verhaltens, sondern vermutlich durch intra- oder intermolekularen Angriff eines Mo-Atoms auf die P=S-Bindung. 10 reagiert nicht mit anderen, räumlich anspruchsvolleren Oxidationsmitteln wie Hexafluoraceton oder Tetrachlor-o-benzochinon.

Abb. 1. Das Molekül von Verbindung **8** im Kristall. Radien sind willkürlich. Ausgewählte Abstände [pm] und Winkel [°]: Mo(1)-C(1) 203.5, Mo(1)-C(2) 199.0, Mo(1)-C(3) 197.3, Mo(1)-C(4) 203.0, Mo(1)-P(1) 251.52, Mo(1)-P(2) 259.68, P(1)-C(5) 184.8, P(2)-C(5) 184.9 pm; C(3)-Mo(1)-C(2) 93.49, C(3)-Mo(1)-C(4) 81.92, C(2)-Mo(1)-C(4) 91.26, C(3)-Mo(1)-C(4) 83.71, C(2)-Mo(1)-C(1) 90.03, P(1)-Mo(1)-P(2) 67.56, C(5)-P(1)-Mo(1) 96.11, C(5)-P(2)-Mo(1) 93.37, P(1)-C(5)-P(2) 100.55°

I. V. S. dankt der Alexander von Humboldt-Stiftung für ein Postdoktoranden-Stipendium. Den Firmen BASF AG, Bayer AG, Chemetall AG und Hoechst AG wird für Chemikalienspenden, dem Fonds der Chemischen Industrie für eine Beihilfe gedankt.

Experimenteller Teil

Alle Arbeiten wurden unter Ausschluß von Feuchtigkeit und Sauerstoff in getrockneten Lösungsmitteln durchgeführt^[6]. – Schmelz-

punkte: unkorrigiert; Schmelzpunktbestimmungsapparatur Büchi 530 in abgeschmolzenen 0.1-cm-Kapillaren. – NMR: Bruker AC 200 [¹H: 200.1 MHz, ¹³C: 50.3 MHz mit CDCl₃ und ³¹P: 81.0 MHz mit H₃PO₄ (85%) als Referenz]. – MS: Finnigan MAT 8430. – IR: Nicolet 320 FT-IR. – Elementaranalysen: Mikroanalytisches Laboratorium Beller, Göttingen.

Nach Literaturvorschriften wurden dargestellt: $Me_3P^{[7]}$, $Me_2PCH_2Li^{[2]}$, $tBu_2PCl^{[8]}$, $NorMo(CO)_4^{[9]}$, $C_7H_8Mo(CO)_3^{[10]}$.

Bis[(di-tert-butylphosphanyl)methyl]methylphosphan (5): Eine Lösung von LiCH₂P(CH₃)₂ (1.0 g, 12 mmol) in 40 ml Diethylether wurde unter Kühlung im Eis-/Wasserbad tropfenweise mit 2.16 g (12 mmol) Di-tert-butylchlorphosphan (2), gelöst in 10 ml des gleichen Lösungsmittels, versetzt. Es wurde 1 h bei Raumtemp. gerührt, dann wurden das Lösungsmittel und P(CH₃)₃ im Hochvak, entfernt. Der Rückstand wurde bei $2 \cdot 10^{-5}$ Torr in einem Kugelrohrdestillationsgerät fraktioniert. Neben 3 (0.52 g; 20%) destillierte verunreinigtes 5 bei 250°C, das anschließend säulenchromatographisch an neutralem Aluminiumoxid (Säule 6×2 cm) gereinigt wurde. Mit 50 ml CH₂Cl₂ wurde reines 5 eluiert, das beim Entfernen des Lösungsmittels als farbloser Feststoff (1.30 g; 30%) anfiel; Schmp. 112 °C. – ¹H-NMR (CDCl₃): $\delta = 1.73 - 1.61$ (m, PCH₂PCH₂P), 1.17 (d, ${}^{2}J_{PH} = 3.65$ Hz, PCH₃), 1.11 [d, ${}^{3}J_{PH} = 11.2$ Hz, PC(CH₃)₃], 1.08 [d, ${}^{3}J_{PH} = 11.1$ Hz, PC(CH₃)₃]. $- {}^{31}P{}^{1}H{}-NMR$ (CDCl₃): $\delta = 18.08$ (d, ${}^{2}J_{PP} = 113.2$ Hz, $tBu_{2}P$), -34.95 (t, ${}^{2}J_{PP} = 113.4$ Hz, MeP). -¹³C{¹H}-NMR (CDCl₃): $\delta = 31.94 - 31.10$ [m, 2 PC(CH₃)₃], 29.96-29.50 [m, PC(CH₃)₃], 24.78-23.50 (m, PCH₂P), 14.97 (dt, ${}^{1}J_{PC} = 17.3, {}^{3}J_{PC} = 7.2 \text{ Hz}, \text{ PCH}_{3}$). $- {}^{13}C{}^{1}H, {}^{31}P\text{-selektiv}$ -NMR (CDCl₃) {³¹P bei $\delta = -34.95$ }: $\delta = 31.80$ [d, ¹J_{PC} = 14.1 Hz, $PC(CH_3)_3$], 31.40 [d, ${}^{1}J_{PC} = 14.4$ Hz, $PC(CH_3)_3$], 29.86 [d, ${}^{2}J_{PC} = 7.8$ Hz, PC(CH₃)₃], 29.61 [d, ${}^{2}J_{PC} = 8.1$ Hz, PC(CH₃)₃]; {³¹P bei $\delta = 18.08$ }: $\delta = 31.60$ [d, ${}^{3}J_{PC} = 14.3$ Hz, PC(CH₃)₃], 29.81, 29.65 [je s, C(CH₃)]. - MS (70 eV), m/z (%): 364 [M⁺⁺] (0.04), 307 [M⁺⁺ - tBu (100), 251 [307 $- C_4H_8$] (70), 195 [251 $- C_4H_8$] (22), 139 $[195 - C_4H_8]$ (10), 57 $[C_4H_9]$ (22). – Trotz mehrfacher Versuche wurde für die NMR-spektroskopisch vollständig charakterisierte Verbindung 5 keine befriedigende Elementaranalyse erhalten.

Darstellung von 6: Eine Mischung von 1.00 g (2.7 mmol) 5 und 0.26 g (8.0 mmol) Schwefel wurde in einem Zug mit 15 ml Dichlormethan versetzt. Das Reaktionsgemisch erhitzte sich bis zum Sieden des Lösungsmittels. Nach Abkühlen auf Raumtemp. wurde an Kieselgel G 60 (Säule 6 \times 2 cm) chromatographiert und mit Dichlormethan eine gelbe Fraktion eluiert. Aus heißem Diethylether kristallisierten 1.09 g (2.3 mmol, 88%) mit Schwefel verunreinigtes 6. Eine Elementaranalyse wurde deshalb nicht durchgeführt. - ¹H-NMR (CDCl₃): $\delta = 3.41$ (m, 2 PCH₂P), 2.49 (d, ${}^{3}J_{PH} = 14.3$ Hz) und 2.09 (d, ${}^{2}J_{PH} = 13.8$ Hz, 2 PCH₃, 4:1), 1.33 [d, ${}^{3}J_{PH} = 15.6$ Hz, PC(CH₃)₃]. $-{}^{31}P{}^{1}H$ -NMR (CDCl₃): $\delta = 72.00 \text{ [d, }^{2}J_{PP} = 19.6 \text{ Hz},$ $P(=S)(C(CH_3)_3)_2], 45.50 [t, {}^2J_{PP} = 19.2 Hz, P(=S)CH_3]. - {}^{13}C{}^{1}H{}-$ NMR (CDCl₃): $\delta = 39.36$ [d, ${}^{1}J_{PC} = 41.2$ Hz, PC(CH₃)₃], 38.73 [d, ${}^{1}J_{PC} = 41.1$ Hz, PC(CH₃)₃], 28.08 (d, ${}^{1}J_{PC} = 24.9$ Hz, PCH₂P), 27.05 $[d, {}^{2}J_{PC} = 22.2 \text{ Hz}, PC(CH_{3})_{3}], 20.71 (d, {}^{1}J_{PC} = 57.4 \text{ Hz}, PCH_{3}).$ MS (70 eV), m/z (%): 460 [M⁺⁺] (100), 403 [M⁺⁺ - tBu] (30), 347 $[tBu_2P(=S)CH_2P(=S)(Me)CH_2P(=S)H]$ (78), 291 [(tBu)- $HP(=S)CH_2P(=S)(Me)CH_2P(=S)H$] (58), 235 [$H_2P(=S)CH_2P(=S)$ - $(Me)CH_2P(=S)H]$ (24), 57 [*t*Bu⁺⁺] (74).

Darstellung von 8: Zu einer Lösung von 1.05 g (3.5 mmol) 7 in 20 ml Dichlormethan wurden 0.77 g (3.5 mmol) 3 getropft. Es wurde 16 h bei Raumtemp. unter Lichtausschluß gerührt, dann im Hochvak. auf 10 ml Lösungsvolumen eingeengt und an Kieselgel G 60 (2 × 6 cm) chromatographiert. Mit 50 ml Dichlormethan wurde eine gelbe Fraktion eluiert. Umkristallisation aus heißem Toluol ergab 0.53 g (35%) 8, Schmp. 144 °C (Zers.). – ¹H-NMR (CDCl₃): δ = 2.97 (dd, ${}^{2}J_{PH} = 9.1$, ${}^{2}J_{PH} = 9.1$ Hz, PCH₂P), 1.55 (d, ${}^{2}J_{PH} = 6.6$ Hz, PCH₃), 1.33 [d, ${}^{3}J_{PH} = 13.4$ Hz, PC(CH₃)₃]. $-{}^{31}P{}^{1}H{}$ -NMR (CDCl₃): δ = 41.85 [d, ${}^{2}J_{PP} = 8.6$ Hz, PC(CH₃)₃], -26.19 (d, ${}^{2}J_{PP} = 8.6$ Hz, PMe₂). $-{}^{13}C{}^{1}H{}$ -NMR (CDCl₃): δ = 38.47 [dd, ${}^{3}J_{PC} = 9.8$, ${}^{1}J_{PC} = 19.5$ Hz, PC(CH₃)₃], 34.27 (dd, ${}^{1}J_{PC} = 2.3$, ${}^{1}J_{PC} = 7.5$ Hz, PCH₂P), 29.65 [d, ${}^{2}J_{PC} = 7.0$ Hz, PC(CH₃)₃], 19.60 (dd, ${}^{3}J_{PC} = 8.3$, ${}^{1}J_{PC} = 14.9$ Hz, PCH₃). - MS (70 eV), m/z (%): 430 [M⁺⁺] (20), 402 [M⁺⁺ - CO] (26), 374 [M⁺⁺ - 2 CO] (30), 346 [M⁺⁺ - 3 CO] (40), 289 [346 - tBu] (100). $- C_{15}H_{26}MOO_4P_2$ (428.25): ber. C 42.07, H 6.12, P 14.40; gef. C 41.98, H 6.11, P 14.53.

Darstellung von 10: Eine Lösung von 0.82 g (2.7 mmol) Tetracarbonyl(norbornadien)molybd $\ddot{a}n(0)$ (7) in 10 ml CH₂Cl₂ wurde bei Raumtemp. unter Rühren mit einer Lösung von 1.0 g (2.7 mmol) 5 in 10 ml CH₂Cl₂ versetzt und 12 h unter Lichtausschluß gerührt. Dann wurde das Reaktionsgemisch i. Vak. (0.5 Torr) eingeengt, an Kieselgel G 60 chromatographiert (Säule 6 × 1 cm) und eine gelbe Fraktion mit CH2Cl2 eluiert. Nach Entfernen des Lösungsmittels i. Vak. (0.5 Torr) wurde in wenig heißem Toluol aufgenommen. Bei Raumtemp. kristallisierten 1.14 g (74%) 10 als gelbe Kristalle, Schmp. 152 °C. – ¹H-NMR (CDCl₃): $\delta = 3.06$ (t, ${}^{2}J_{PH} = 7.6$ Hz, MoPCH₂PMe), 2.0-1.75 (m, MoPCH₂P), 1.71 (d, ${}^{2}J_{PH} = 5.7$ Hz, PCH₃), 1.35 (d, ${}^{3}J_{PH} = 4.8$ Hz) und 1.29 [d, ${}^{3}J_{PH} = 4.9$ Hz, MoPC(CH₃)₃], 1.19 (d, ${}^{3}J_{PH} = 7.4$ Hz) und 1.13 [d, ${}^{3}J_{PH} = 7.1$ Hz, je $\lambda^{3}PC(CH_{3})_{3}$]. - ${}^{31}P{}^{1}H$ -NMR (CDCl₃): $\delta = 42.39$ (d, ${}^{2}J_{PP} = 21.4$ Hz, CH₃PCH₂P(tBu)₂Mo), 18.82 (d, ${}^{2}J_{PP} = 74.7$ Hz, $PCH_2P(tBu)_2$, -18.99 (dd, ${}^2J_{PP} = 74.7$, ${}^2J_{PP} = 21.4$ Hz, MoPCH₃). $- {}^{13}C{}^{1}H$ -NMR (CDCl₃): $\delta = 219.4$ [m, 2 Mo(CO)], 214.75 [dd, ${}^{2}J_{PC} = 9.1$, ${}^{2}J_{PC} = 7.8$ Hz, Mo(CO)], 214.01 [dd, ${}^{2}J_{PC} = 8.7$, ${}^{2}J_{PC} = 8.7$ Hz, Mo(CO)], 39.07 (dd, ${}^{1}J_{PC} = 18.1$, ${}^{3}J_{PC} = 9.0$ Hz) und 39.16 [dd, ${}^{1}J_{PC} = 18.0$, ${}^{3}J_{PC} = 9.0$ Hz, je MoPC(CH₃)₃], 34.15 [ddd, ${}^{1}J_{PC} = 19.0, {}^{1}J_{PC} = 7.5, {}^{3}J_{PC} = 2.6 \text{ Hz}, \text{ MoPCH}_{2}P(CH_{3})Mo], 31.53$ $(dd, {}^{1}J_{PC} = 23.3, {}^{3}J_{PC} = 6.4 \text{ Hz}) \text{ und } 31.29 \text{ [dd, } {}^{1}J_{PC} = 22.4, {}^{3}J_{PC} = 4.6$ Hz, PC(CH₃)₃], 29.92-29.36 [m, PC(CH₃)₃], 24.91 (ddd, ${}^{1}J_{PC} = 44.6$, ${}^{1}J_{PC} = 10.8$, ${}^{3}J_{PC} = 8.8$ Hz, MoPCH₂P), 18.93 (ddd, ${}^{4}J_{PC} = 15.8$, ${}^{3}J_{PC} = 12.5, \; {}^{3}J_{PC} = 6.5 \text{ Hz}, \text{ PCH}_{3}$). - MS (70 eV), m/z (%): 574 $[M^{++}]$ (3), 546 $[M^{++} - CO]$ (2.8), 518 $[M^{++} - 2 CO]$ (7.4), 490 $[M^{+} - 3 CO]$ (6.2), 307 $[M^{+} - 4 CO - Mo - tBu]$ (100), 251 $[307 - Me_2C=CH_2]$ (56), 195 $[251 - Me_2C=CH_2]$ (12), 57 $[C_4H_9]$ (92). – IR (Hexan): $\tilde{v} = 2013$ (m) cm⁻¹, 1920 (m), 1897 (s) (CO). – C₂₃H₄₃MoO₄P₃ (575.4): ber. C 48.26, H 7.57, P 16.23; gef. C 48.15, H 7.53, P 16.02.

Bildung von 11: Eine Lösung von 0.20 g (0.36 mmol) 9 in 3 ml CDCl₃ wurde bei Raumtemp. mit 0.012 g (0.38 mol) Schwefel versetzt. Innerhalb von 10 min entstand 11. – ¹H-NMR (CDCl₃): $\delta = 3.48 - 3.38$ (m, MoPCH₂PMe), 2.55–2.17 [m, PCH₂P(=S)], 2.02 (d, ²J_{PH} = 5.7 Hz, PCH₃), 1.42–1.26 [m, PC(CH₃)₃]. – ³¹P{¹H}-NMR (CDCl₃): $\delta = 77.01$ [d, ²J_{PP} = 26.3 Hz, P(=S)tBu₂], 44.12 (d, ²J_{PP} = 32.2 Hz, MoPtBu₂), -8.61 (dd, ²J_{PP} = 26.8, ²J_{PP} = 31.4 Hz, PCH₃). – ¹³C{¹H}-NMR (CDCl₃): $\delta = 39.65 - 38.43$ [m, MoP(C(CH₃)₃)₂], 39.43 (d, ¹J_{PC} = 24.7 Hz) und 38.66 [d, ¹J_{PC} = 21.6 Hz, P(=S)C(CH₃)₃], 35.09–34.13 (m, MoPCH₂PMe), 29.99 (d, ²J_{PC} = 6.6 Hz) und 29.72 [d, ²J_{PC} = 6.4 Hz, je Mo-PC(CH₃)₃], 27.90 [d, ¹J_{PC} = 24.2 Hz, P(=S)CH₂P], 27.57 [d, ²J_{PC} = 8.8 Hz, P(=S)(C(CH₃)₃)₂], 24.25 [dd, ¹J_{PC} = 23.7, ¹J_{PC} = 10.1 Hz, MoP(CH₃)CH₂P(=S)], 18.18 (m, PCH₃).

Röntgenstrukturanalyse der Verbindungen 8 und 10

8: $C_{15}H_{26}MoO_4P_2 \cdot 1/2 C_7H_8$, M = 474.30, monoklin, $P_{2_1/c}$, a = 897.6(4), b = 1275.5(3), c = 1983.9(6) pm, $\beta = 92.02(3)^\circ$, V = 2.2623(13) nm³, Z = 4, $D_x = 1.393$ Mg/m³, $\mu = 0.74$ mm⁻¹, T = 143K, F(000) = 980, $2\Theta_{max} = 55^\circ$, Zahl der Reflexe: 6796, davon unabhängig 5226, $R_{int} = 0.015$, $R[F, >4\sigma(F)] = 0.027$, $wR(F^2$, alle Reflexe) = 0.063, 224 Parameter, S = 1.1, Max. $\Delta/\sigma < 0.001$, Max. $\Delta\varrho=0.69\cdot 10^{-6}~e~pm^{-3},$ farbloser Kristall, 0.58 \times 0.58 \times 0.31 mm.

10: $C_{23}H_{43}MoO_4P_3$, M = 572.42, monoklin, $P2_1/c$, a = 1235.6(3), b = 1546.0(4), c = 1539.7(3) pm, $\beta = 105.92(2)^\circ$, V = 2.8284(11) nm³, Z = 4, $D_x = 1.344$ Mg/m³, $\mu = 0.66$ mm⁻¹, T = 143 K, $F(000) = 1200, 2\Theta_{max} = 55^\circ$, Zahl der Reflexe: 7927, davon unabhängig 4994, $R_{int} = 0.022$, $R[F, > 4\sigma(F)] = 0.027$, $wR(F^2$, alle Reflexe) = 0.061, 293 Parameter, S = 1.1, Max. $\Delta/\sigma = 0.002$, Max. $\Delta \varrho = 0.37 \cdot 10^{-6}$ e pm⁻³, gelber Kristall 0.80 × 0.64 × 0.25 mm.

Datensammlung und -reduktion: Die Kristalle der Verbindungen 8 und 10 wurden mit Inertöl (Typ RS 3000, Geschenk der Fa. Riedel-de Haën) auf den Glasfaden des Goniometerkopfes montiert und in den Kaltgasstrom des Diffraktometers gebracht (Stoe-STADI-4 mit Siemens-LT-2-Tieftemperaturzusatz). Es wurde mit monochromatisierter Mo- K_{α} -Strahlung gemessen. Die Gitterkonstanten wurden aus $\pm \omega$ -Werten von 60 (10) bzw. 54 (8) Reflexen im 2 Θ -Bereich 20-23° verfeinert. Für Verbindung 10 wurde eine Absorptionskorrektur mit Hilfe von Ψ -Scans durchgeführt (min./ max. Transmission 0.78/0.92).

Strukturlösung und -verfeinerung: Das Programmsystem SHELXL-92^[11] wurde verwendet. Die Strukturen wurden mit direkten Methoden gelöst und anisotrop auf F^2 verfeinert. Wasserstoffatome wurden mit einem Riding-Modell bcrücksichtigt. – Weitere Einzelheiten zu den Röntgenstrukturanalysen wurden beim

Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, deponiert. Dieses Material kann dort unter Angabe eines vollständigen Literaturzitats sowie der Deponiernummern CSD-400 218 (8) und 400 219 (10) angefordert werden.

- ^[1] Herrn Professor Heinrich Nöth zum 65. Geburtstag gewidmet.
- ^[2] H. H. Karsch, H. Schmidbaur, Z. Naturforsch., Teil B, **1977**, 32, 762–767.
- ^[3] H. H. Karsch, Z. Naturforsch., Teil B, 1979, 34, 1171-1177.
- ^[4] L. Maier, Top. Phosphorus Chem. 1965, 2, 43-131.
- ^[5] D. J. Brauer, S. Hietkamp, H. Sommer, O. Stelzer, G. Müller, M. J. Romao, C. Krüger, J. Organomet. Chem. 1985, 296, 411-433.
- ^[6] D. D. Perrin, W. L. F. Armarego, D. R. Perrin, *Purification of Laboratory Chemicals*, 3. Aufl., Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Paris, Braunschweig, **1988**.
- ^[7] W. Wolfsberger, H. Schmidbaur, Synth. React. Inorg. Metal-Org. Chem. 1974, 4, 149-156.
- ^[8] M. Fild, O. Stelzer, R. Schmutzler, Inorg. Synth. 1973, 14, 4-9.
- ^[9] M. A. Bennett, L. Pratt, G. Wilkinson, J. Chem. Soc. 1961, 2037-2044.
- [^{10]} F. A. Cotton, J. A. McCleverty, J. E. White, *Inorg. Synth.* 1967, 9, 121-122.
- ^[11] G. M. Sheldrick, SHELXL-93, a Program for Crystal Structure Refinement (pre-release version 1992), Universität Göttingen.

[152/93]